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Abstract

The dynamic growth of an internal circular crack in a transversely isotropic composite is investigated using the
techniques of Hankel and Laplace transforms. The Laplace inversion is carried out through a complete contour in-
tegration. For the crack running at a constant speed, exact dynamic solutions for crack shape and stress distribution
with singularities in the crack plane are obtained in closed forms in terms of anisotropic material constants and crack
speed.

Graphite/epoxy and E glass/epoxy materials and an isotropic material are used as example materials in calculating
the numerical values of the dynamic stress intensity factor and crack shape. The dynamic solution reduces to the static
solution at zero crack speed and deviates at speeds other than zero. Deviation between dynamic and static solutions is
governed by dynamic correction factors, which are non-dimensional functions of anisotropic material constant ratios
and the ratio between crack speed and shear-wave speed. Values of these dynamic factors are obtained for the sample
composites for a large range of crack speed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic problem of a circular crack propagating in an infinite isotropic elastic solid was investi-
gated by Kostrov (1964). The results obtained were largely the highest order approximations in the im-
mediate neighborhood of the crack tip. Dynamic propagation toughness was measured as a function of
crack speed by means of caustics (Kalthoff et al., 1980). Study of rapid crack propagation is important in
the understanding of dynamic fracture and crack arrest.

Composite materials have recently been used in many structural applications. Transversely isotropic
material with five elastic constants was shown to be sufficient to characterize many fiber-reinforced com-
posites (Christensen, 1979). For a stationary penny-shaped crack in a transversely isotropic infinite elastic
solid, under static loading, the normal stress distribution in the crack plane was found to be identical with
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that for the corresponding isotropic solution (Elliott, 1949). Consequently, the static stress intensity factor
is the same for the isotropic and the transversely isotropic media.

The dynamic response to vibratory normal stresses in a transversely isotropic material containing an
external circular crack was studied in an earlier work (Tsai, 1992). The dynamic growth of a circular crack
in a transversely isotropic composite is investigated in the present work. The problem is solved using the
techniques of Hankel and Laplace transforms. The Laplace inversion is carried out through a complete
contour integration. For the crack running at a constant speed, exact dynamic expressions for the crack
shape and the stress intensity factor are obtained in terms of anisotropic material constants and crack
speed. The effects that the material anisotropy and the crack speed have on the fracture behavior are in-
vestigated for graphite/epoxy and glass/epoxy composites.

2. Transformed solution

The stress—strain relationship in cylindrical coordinates (r,6,z) for a transversely isotropic composite
can be written in the following form (Christensen, 1979):
Oy = C11€y + C12€00 + C13€2;
O09 = C12€n + Cl1€09 + C13€;

02 = C13€, + C13€99 + C33€2;

_ (1)
Oz = C44€;;
0p; = C44€¢;
g, = (611 - CIZ)er()/z

The z-axis is along the axis of symmetry of the material. An infinite transversely isotropic elastic solid is
assumed to carry a uniform tension p, in the z-direction at infinity. A circular crack starts to propagate at
time ¢ equal to zero and has current radius a(¢) in a plane perpendicular to the direction of tension. Solution
of the problem can be obtained by superposing a uniform tension p, on the stress fields set up by a uniform
pressure, —p,, which acts on the crack surfaces.

The wave field generated by the propagating crack is axisymmetrical and its displacement components
can be described as (u,,0,u.). The boundary conditions on the crack plane z =0 for ¢ > 0 are

0, =0 (2)

" — {w(r), r<a 3)

r>a

The unknown function w(r) describes the crack surface and is to be determined later. Using the strain—
displacement relations, the equations of motion can be written in terms of the displacement components as
follows:

010 o*u, 0%, 1 u,

or [? 5(””’)] T+ 5s T2 T2 % “)
10 ou o120 %u 1 %u
- z 1 I z — z
r@r(r@r)+( +5)az[rar(m’)}+°‘azz 2 o ®)
f=ci/caw, o= c33/Can, 0 = ci3/caw, ¢y =/ca/4 (6)

The quantity 4 is the density of the medium.
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The Laplace transform is operated over the time variable ¢ in Egs. (4) and (5) and is designated as f*(p).
In addition, the first-order and zeroth-order Hankel transforms are respectively applied to Egs. (4) and (5)
over the variable r with the transform parameter s. The transformed equations have the following forms:

al K o

y— (S2+p2/C§)Mi—(1+5)S az :0 (7)
zﬁé 2, 2/2\A0 @ﬁi

vas — (4 p*/c3)il + (14 0)s % =0 (8)

The function 4! is the first-order Hankel transform of u, while & is the zeroth-order Hankel transform of u..
To solve the problem, the transformed displacements are chosen of the following forms.

il = Ade™, i) = Be™* 9)
Egs. (7) and (8) lead to the following characteristic equation for the parameter k:
[ak? — (s> + p* /)] [ — (s> + PP /c3)] + (1 +8)*s*%,> = 0 (10)

The equation can be seen as a quadratic equation for &? and has two roots, k7 and k3. The positive roots,
ki and k, are used in Eq. (9) in order to satisfy the radiation conditions. A more detailed description on the
properties of the roots will be presented later in connection with the Laplace inversion. Each root requires
two constants in Eq. (9). The constants are related through Eq. (8) in the following forms:

Aikis = [ockl.z— (sz—i—pz/c%)}Bl/(l—i—é) (11)

The subscript i has the range of 1 and 2.
The shearing stress o, can be calculated in terms of Egs. (1), (9) and (11). Satisfying the stress boundary
condition in Eq. (2) yields

B, okt + 05* — p*/c3) = —(ak3 + 65 — p*/c3) By (12)
If Egs. (9) and (12) are used, the displacement boundary condition gives

By = [k + 05> — p*/ 2]/ (k2 — k)t (13)

W= /Oa w(r)rdo(sr)dr (14)

The transform of the normal stress .. can be calculated in terms of Egs. (1), (9) and (11)—(13). The results
can be written as follows:

6§Z = —Wé [Aszl + c44pF2] (15)
F = [1+p/kika)/(k + k) (16)
B = [bis* + ap’s’ /a3 [p(ky + ka)kiks (17)
ag=1+p—-08/ (18)
by =B — & /o (19)

Eq. (15) is used to satisfy the condition of pressure acting on the crack surface and to solve for the unknown
crack shape function w(r).
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3. Dynamic crack surface displacement

The Laplace inversion of Eq. (15) is carried out by treating each term on the right-hand side as a separate
transform function. For the evaluation of the Laplace inversion integrals, the transformation p = sc,& is
used in the calculations. After the transformation, the new forms of the characteristic roots can be written as

o =hifs={[r+ 1 +0)+0]/20}" (20)
0 =la/s = {[p+ (1 + 00 — 9] /24}" (21)
0= [+ (1L + 0] — o[l + (1 + B + ] (22)
y=14ap—(1+40) (23)

The roots of ¢ in Eq. (22) are complex for the composite materials to be considered. The roots are the
branch points of ¢; and ¢; (Payton, 1983; Tsai and Kolsky, 1967; Tsai, 1992). In addition, ¢; has the branch
point at { = +if"? and g3 has the branch point at { = +i. The augmentation of two elastic constants for an
isotropic material (Tsai and Kolsky, 1967; Tsai, 1971) to the five material constants for the current
transversely isotropic material has greatly increased the complexity of the problem considered. The in-
tegrands of the integrals obtained in the present work are mostly different from those for the associated
isotropic integral and involve four branch points instead of two branch points for an isotropic material
(Tsai and Kolsky, 1967; Tsai, 1971). The infinite integrals which are obtained through the process of
Laplace transform in the current problem are different from the frequency integrals for a very different set
of boundary conditions involved in the earlier work (Tsai, 1992). A completely different contour involving
four branch points is devised in the evaluations of the current Laplace inversion integrals. The inversion of
F, in Eq. (16) can be written in the following form:

f] = f_l [F]] = ¢,L; sin (SCzl’[t) (24)

The operator L; has the following form

2 Vb ~1/2 -1/2
Lif(gn) = 5/1 “[|Q3| —Varq (B—?) " = 1) /}f(gn)dn/(p
2 [ -1/2 -1/2
= y (1 (7 = )2 = 1) e dan/ (an| + las)) (25)
The function F; in Eq. (17) has a pole at p = 0 and its inversion results from the contributions of the pole
and the branch cuts are as follows:

fo = 0[R] = slfo + Lo cos (seant)] (26)
So="b1/ [2/5’/0C + Vﬁl/za%/z] (27)
\/E 1/2 1/2
Lyf(gn) = % /1 2 [an® — b auf (gn) dn/no (B — )" (P — 1)
+% /\; o2 [by — av?] f(gn)dn/n(n* = )2 (1 = 1) (|qu| + |gs]) (28)

The material constants ratio f, in Eq. (27) is the contribution of the pole.
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Laplace and Hankel inversions of Eq. (15) give the normal stress at z=0 as

0:(r, 1) = a2, — peaLi Q1 — caalr O (29)
o = —foc44/ Jo(sr)s* i’ ds (30)
0
°“ 0
o z/ Jo(sr S—/ sin [scon(t — r)]a—w drds (31)
0
o) t a
0, = / Jo(sr)sz/ cos [scon(t — 1)) —w’drds (32)
0 0 ot

where Jy(x) is the zeroth-order Bessel function. The unknown crack shape function w in the above integrals
can be solved from Eq. (29) by the successive approximation techniques similar to those used in an earlier
work (Tsai, 1972). The last two terms on the right-hand side of Eq. (29) are the wave-effects terms. In the
process of solution, these two terms are first dropped to form a reduced equation. The double integration
techniques (Tsai, 1972) are then applied over the reduced equation to obtain the following first approxi-
mation.

¢ mo,,dm

Tffoc44/ \/f — 2 Jo /&

The normal stress o, is equal to the pressure, —pg, over the crack surface. Under this condition, the as-
sociated static crack shape function w; in Eq. (33) becomes

(33)

wi(r,t) =

2 m o, 172
"= TCﬁ)C44 (a B 7'2) (34)

In terms of Eq. (34), the time derivative in the integrands in Egs. (31) and (32) is found as

aAo o [ . .. . 2 py sin(sa) .
6t 6[/0 WIUO(As)dA—nfOC44 . aa (35)

To obtain the second approximation, the double integrations in Eq. (33) are applied over Eq. (29). The
results can be written in terms of Eq. (35) in the following form.

B 2\ po (¢ de L3, 0
= (E) f02044 r \/m{ C at L2 65 } (36)
" [ sin(&s)sin[scon(t — 1)]sin(sa) .
I —/0 /0 . dsaadz (37)
i :/ /oc cos(fS)cos[sczg(t— T)]Sm(sa)dsaadr (38)

For a crack propagating at a constant speed of V, the quantities ¢ and a are respectively equal to ¥; and
V. The numerators in Egs. (37) and (38) are expressed as sums of sine functions. The integrations over s can
then be carried out using the following identity.

Fosinsy . [m/2, x>0
/0 s ds_{—n/2, x<0 (39)
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For & < a, integrations over s and 7 in Egs. (37) and (38) leads to the following results:
0 T viné 0 n 03¢

L =c= , —=h=—= 40
at 1 22(]1+Uz)2 652 2(17_’_1)2)2 ( )
where v, = ¥ /c,. Upon substituting Eq. (40) into Eq. (36), the second approximation becomes:
2 p ) 5
Wy = — a—rl—e¢=w(l—c¢ 41
= Foem [1—e=w(l-¢ (41)
2
vy n 1
€ = — Ll + L2 (42)
fol " +w) i+

If all the higher order approximations are carried out in the way similar to that for w,, the solution for w(r)
results in an infinite series which can be summed into a closed form as follows:

w:W1(1—e+¢sz—e3—i--~-)an%(;(az—rz)l/2 (43)

KD :f0044(1 + 6) (44)

The dynamic correction term e can be seen in Eq. (42) to be vanishing when the crack speed V tends to zero.
At this limiting case, the dynamic crack surface function in Eq. (43) reduces to the corresponding static
function in Eq. (34).

4. Dynamic stress intensity factor
The normal stress 0., in Eq. (29) is found to be singular at the crack tip. For r > a, the associated static

normal stress in Eq. (30) is calculated in terms of w in Eq. (43) by using the techniques similar to those used
in an earlier work (Tsai, 1972) to have the following form.

2 .
o = ¢ _sin'? (45)
= TC(] + 6) ]/'2 — a2 r

To calculate the values of Q; and Q,, the Abel transform is applied over r, giving

< mQdm _ 2py O

Ql = 0 m_TCKD all (46)
= _ 2p ©
QZ - TEKD 65 2 (47)

The dynamic crack shape function w in Eq. (43) is used in the above calculations. For » < a, the integrated
expressions for 0/;/0¢t and 0L /0¢ are given in Eq. (40). Similar techniques of integrations are used for
a < r < cont and the results are

0

o1 = e’ (na — 08)/ (o — )’ (48)
0 y

52t = midn(na = 39)/( = )’ (49)

The inverse Abel transform of Eq. (46) recovers the function
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214 [ ¢ 2pm 0
=273 ), (r-a)” B Y

The same inverse transform of Eq. (47) gives Q,.
The functions Q; and Q,, after integrations, are substituted, together with Eq. (45), into Eq. (29) to
obtain the following dynamic normal stress

~ 2po a . _1a
Gzzn{Glmstln ;+G3 (51)

2

PRVA ) Do BN - Ut L2l =v) 52

(1+¢)Gy +f0 {Ll ot )’ (o — U%)z (1 + 0)° (o — vﬁ)z (52)
S P 20507 I 2051

(1+eG =1 +f0 {Ll _(’7+Uz)2+(’72 g + L, (’Hvz)zﬂL(’72 05)2]} (53)
_ w3 n’ "

1S [L' TR (nz—v%)Z] )

The first term on the right-hand side of Eq. (51) is a singular term. The dynamic stress intensity factor is
calculated from this singular term as

KID = GIKI; KI = 2p()(a/7'f)l/2 (55)

The dynamic stress intensity factor Kip is found above as the product of the static stress intensity factor K
and the dynamic correction factor Gj.

—— —— - ALL MATERIALS (V2=0.0) \
ISOTROPIC MATERIAL (V2=0.8)

0.2 - — = — - = GRAPHITE/EPOXY COMPOSITE (V2=0.8)

— — — - E GLASS/EPOXY COMPOSITE (V2=0.8)

NORMALIZED CRACK SURFACE DISPLACEMENT

0.0 L I | I ! ! ! | )
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NORMALIZED RADIAL DISTANCE

Fig. 1. Normalized crack surface opening w/(2apy/nfocss) as a function of the normalized radial distance, r/a.
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For an isotropic material, the elastic constants are ¢;; = ¢33 = A+ 2u, ¢ = ¢;3 = A and ¢y = pu, where 1
and p are the Lame constants. For these constants, the quantity f, in Eq. (27) becomes 1/(1 — v), v being
Poisson’s ratio. For an isotropic material at zero crack speed, the crack surface function in Eq. (43) and the
normal stress distribution in Eq. (51) reduce to the corresponding results given by Sneddon (1951).

Graphite/epoxy composite has been described as a transversely isotropic material (Rose et al., 1988) and
the five material constants are c¢;; = 14.5, ¢33 = 139, ¢35 = 3.75, c1» = 8.08 and cyy = 5.33, all in the units of
GPa. E glass/epoxy composite is also a transversely isotropic material (Behrens, 1971) and has the an-
isotropic elastic constants in GPa as ¢} = 14.93, ¢33 =47.27, ¢|3 = 5.244, ¢, = 6.567 and cyy = 4.745.
These two materials are used as sample materials for calculations to study anisotropy and crack speed
effects. For comparison, polycrystalline magnesium with Young’s modulus E = 4.1 x 10° N/cm? and
Poisson’s ratio v = 0.3 (Elliott, 1949) is also used here as an example isotropic material.

The dynamic crack surface displacement w is calculated from Eq. (43) for the sample materials at various
crack speeds. The results are normalized by the associated maximum static crack opening 2apy/mfyCus.
Typical normalized crack openings are shown in Fig. 1 for v, =0 and v, = 0.8. The normalized crack
surface displacement at the center of the crack is shown in Fig. 2 as a function of the normalized crack
speed for the sample materials. The dynamic stress intensity factor is also calculated from Eq. (55). The
values normalized by the associated static stress intensity factor are shown in Fig. 3 for a wide range of the
crack speed.
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Fig. 2. Normalized crack center displacement w(0)/(2apy/nfocas) as a function of the normalized crack speed v, = V' /c;.
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Fig. 3. Normalized dynamic stress intensity factor Kijp/K; as a function of the normalized crack speed v, = V/cs.

5. Conclusion

An internal circular crack propagating in a transversely isotropic composite is investigated using the
techniques of Hankel and Laplace transforms. The Laplace inversion integral is evaluated through a com-
plete contour integration. For the crack running at a constant speed, exact dynamic solutions for the crack
shape and the normal stress distribution with singularities in the crack plane are obtained in closed forms in
terms of anisotropic material constants and crack speed. The dynamic solution reduces to the associated
static solution at zero crack speed. When the crack propagates, the deviation of the dynamic solution from
the static solution is governed by dynamic correction factors which are nondimensional functions of the
ratios among anisotropic material constants and the ratio of the crack speed to the shear-wave speed.

The dynamic crack surface opening and stress intensity factor are calculated numerically for graphite/
epoxy and E glass/epoxy composite materials and an isotropic material for a large range of crack speed.
The dynamic crack surface openings for both composite and isotropic material are seen in Fig. 1 to be less
than the corresponding static opening. The crack surface displacement at the center of the crack in the
composites are shown in Fig. 2 to be larger than the corresponding isotropic crack surface displacement at
various crack speeds. The dynamic stress intensity factors for the composites are also seen in Fig. 3 to be
higher than the dynamic isotropic values for a large range of crack speed. Because of different degrees of
anisotropy, the dynamic crack surface opening and stress intensity factor for the graphite/epoxy composite
are shown in Figs. 1-3 to be higher than the corresponding values for the E glass/epoxy composite.
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